COVID-19 data analysis
Projection of COVID-19 positive cases considering hybrid immunity: case study in Tokyo
S. Kodera, A. Takada, E. A. Rashed, A. Hirata Vaccines (2023) DOI: 10.3390/vaccines11030633 Keywords: Hybrid immunity, vaccination effectiveness, herd immunity, COVID-19, forecasting, deep learning Open access: https://www.mdpi.com/2076-393X/11/3/633 |
COVID-19 and Environment: Impacts of a Global Pandemic
S. Kodera and E. A. Rashed (Eds.) MDPI, Basel (2022) Free Download: MDPI Books ISBN: 978-3-0365-5842-4 (Hbk), 978-3-0365-5841-7 (PDF) DOI: 10.3390/books978-3-0365-5841-7 |
The effects of time window averaged mobility on effective reproduction number of COVID-19 viral variants in urban cities
S. Kodera, K. Hikita, E. A. Rashed, A. Hirata Journal of Urban Health (2022) DOI: 10.1007/s11524-022-00697-5 Keywords: COVID-19, effective reproduction number, mobility, transmission model Open access: https://link.springer.com/article/10.1007/s11524-022-00697-5 |
Estimation of mRNA COVID-19 vaccination effectiveness in Tokyo for Omicron variants BA.2 and BA.5 -- effect of social behaviour --
S. Kodera, Y. Niimi, E. A. Rashed, N. Yoshinaga, M. Toyoda, A. Hirata Vaccines (2022) DOI: 10.3390/vaccines10111820 Keywords: COVID-19, vaccination effectiveness, Omicron variant, Twitter Open access: https://www.mdpi.com/2076-393X/10/11/1820 |
COVID-19 forecasting using new viral variant and vaccination effectiveness models
E. A. Rashed, S. Kodera, A. Hirata Computers in Biology and Medicine (2022) DOI: 10.1016/j.compbiomed.2022.105986 Keywords: COVID-19, forecasting, deep learning, vaccination effectiveness PDF: download |
Did the Tokyo Olympic Games Enhance the Transmission of COVID-19? -Interpretation with Machine Learning-
A. Hirata, S. Kodera, Y. Diao, E. A. Rashed Computers in Biology and Medicine (2022) DOI: 10.1016/j.compbiomed.2022.105548 Keywords: Machine learning, COVID-19, Olympic Games, viral transmission, numerical modeling Open access: https://www.sciencedirect.com/science/article/pii/S0010482522003407 |
Estimation of real-world vaccination effectiveness of mRNA Covid-19 vaccines against Delta and Omicron variants in Japan
S. Kodera, E. A. Rashed, A. Hirata Vaccines (2022) DOI: 10.3390/vaccines10030430 Keywords: COVID-19, vaccination strategy, waning immunity, Japan Open access: https://www.mdpi.com/2076-393X/10/3/430 |
Infectivity upsurge by COVID-19 viral variant in Japan: evidence from a deep learning modeling
E. A. Rashed, A. Hirata Int. J. Environ. Res. Public Health (2021) DOI: 10.3390/ijerph18157799 Keywords: COVID-19, forecasting, deep learning, viral variant Software: available upon request Open access: https://www.mdpi.com/1660-4601/18/15/7799 |
One-year lesson: Machine learning prediction of COVID-19 positive cases with meteorological data and mobility estimate in Japan
E. A. Rashed, A. Hirata Int. J. Environ. Res. Public Health (2021) DOI: 10.3390/ijerph18115736 Keywords: COVID-19, forecasting, LSTM, meteorological data, deep learning Software: available upon request Open access: https://www.mdpi.com/1660-4601/18/11/5736 🏆 Editor's Choice Article |
Knowledge discovery from emergency ambulance dispatch during COVID-19: A case study of Nagoya City, Japan
E. A. Rashed, S. Kodera, H. Shirakami, R. Kawaguchi, K. Watanabe, A. Hirata Journal of Biomedical Informatics (2021) DOI: 10.1016/j.jbi.2021.103743 Keywords: Deep learning, long short-term memory (LSTM), COVID-19, emergency ambulance dispatch (EAD) Preprint: http://arxiv.org/abs/2102.08628 Software: available from here |
Influence of population density, temperature, and absolute humidity on spread and decay durations of COVID-19: A comparative study of scenarios in China, England, Germany, and Japan
Y. Diao, S. Kodera, D. Anzai, J. Gomez-Tames, E. A. Rashed, A. Hirata One Health (2021) DOI: 10.1016/j.onehlt.2020.100203 Keywords: COVID-19, temperature, absolute humidity, population density, multivariable analysis Open Access: https://www.sciencedirect.com/science/article/pii/S2352771420303049 🏆 Highly cited paper by Clarivate Web of Science |
Correlation between COVID-19 morbidity and mortality rates in Japan and local population density, temperature and absolute humidity
S. Kodera, E. A. Rashed, A. Hirata Int. J. Environ. Res. Public Health (2020) DOI: 10.3390/ijerph17155477 Keywords: COVID-19, temperature, absolute humidity, morbidity rate, mortality rate, Japan Preprint: https://arxiv.org/abs/2007.14065 |
Influence of absolute humidity, temperature and population density on COVID-19 spread and decay duration: Multi-prefecture study in Japan
E. A. Rashed, S. Kodera, J. Gomez-Tames, A. Hirata Int. J. Environ. Res. Public Health (2020) DOI: 10.3390/ijerph17155354 Keywords: COVID-19, temperature, absolute humidity, population density, spread and decay duration Preprint: https://arxiv.org/abs/2006.02197 |
Medical imaging & Neuroscience
Advances in Medical Image Segmentation: A comprehensive Survey with Focus on Lumbar Spine Applications
A. Kabil, G. Khoriba, M. Yousef, E. A. Rashed TBD (2025) DOI: TBA Keywords: Medical image segmentation, semantic segmentation, deep learning, lumbar spine segmentation, active learning, transformer networks, federated learning Open access: TBA |
SHARM: Segmented Head Anatomical Reference Models
E. A. Rashed, M. al-Shatouri, I. Laakso, S. Kodera, A. Hirata Biomedical Signal Processing and Control (2025) DOI: 10.1016/j.bspc.2024.107481 Keywords: Human head models, brain segmentation, convolutional neural networks, MRI Open access: https://arxiv.org/abs/2309.06677 Dataset: SHARM dataset |
Deep models for stroke segmentation: do complex architectures always perform better?
A. Soliman, Y. Zafari-Ghadim, Y. Yousef, A. Mohamed, E. A. Rashed, M. Mabrok IEEE Access (2024) DOI: 10.1109/ACCESS.2024.3522214 Keywords: Convolutional neural networks, deep learning, nnU-Net, stroke segmentation, vision Transformer Open access: https://ieeexplore.ieee.org/document/10813166 |
Segmentation of low-grade brain tumors using mutual attention multimodal MRI
H. Seshimo, E. A. Rashed Sensors (2024) DOI: 10.3390/s24237576 Keywords: Image segmentation, low-grade brain tumor, MRI, mutual attention Open access: https://www.mdpi.com/1424-8220/24/23/7576 |
Transformers-based architecture for stroke segmentation: A review
Y. Zafari-Ghadim, E. A. Rashed, A. Mohamed, M. Mabrok Artificial Intelligence Review (2024) DOI: 10.1007/s10462-024-10900-5 Keywords: stroke segmentation, vision Transformer, deep learning, medical imaging Open access: https://link.springer.com/article/10.1007/s10462-024-10900-5 |
High-resolution EEG source localization in personalized segmentation-free head model with multi-dipole fitting
A. Hirata, M. Niitsu, C. R. Phang, S. Kodera, T. Kida, E. A. Rashed, M. Fukunaga, N. Sadato, T. Wasaka Physics in Medicine and Biology (2024) DOI: 10.1088/1361-6560/ad25c3 Keywords: Electroencephalogram (EEG), Head Modeling, Source Localization, Volume Conductor Model Open access: https://iopscience.iop.org/article/10.1088/1361-6560/ad25c3 |
Assessment of artificial intelligent-aided computed tomography in lung cancer screening
N. A. Aboelenin, A. Elserafi, N. Zaki, E. A. Rashed, M. al-Shatouri (2023) Egyptian Journal of Radiology and Nuclear Medicine (2023) DOI: 10.1186/s43055-023-01014-z Keywords: Artificial intelligence, lung‐RADS, lung cancer screening, lung nodules, CT scan Open access: https://ejrnm.springeropen.com/articles/10.1186/s43055-023-01014-z |
High-resolution EEG source localization in segmentation-free head models based on finite-difference method and matching pursuit algorithm
T. Moridera, E. A. Rashed, S. Mizutani, A. Hirata Frontiers in Neuroscience (2021) DOI: 10.3389/fnins.2021.695668 Keywords: Electroencephalogram (EEG), sparse reconstruction, volume conductor model, finite difference method, inverse problem, tissue segmentation Open access: https://www.frontiersin.org/articles/10.3389/fnins.2021.695668/pdf |
Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES
E. A. Rashed, J. Gomez-Tames, A. Hirata Physics in Medicine and Biology (2021) DOI: 10.1088/1361-6560/abe223 Keywords: image segmentation, MRI, ForkNet, uncertainty analysis, TMS, tES Preprint: http://arxiv.org/abs/2009.12015 Software: available from here |
End-to-end semantic segmentation of personalized deep brain structures for non-invasive brain stimulation
E. A. Rashed, J. Gomez-Tames, A. Hirata Neural Networks (2020) DOI: 10.1016/j.neunet.2020.02.006 Keywords: End-to-end semantic segmentation, convolutional neural network, brain stimulation, MRI, tDCS Preprint: https://arxiv.org/abs/2002.05487 Software: available from here |
Learning-based estimation of dielectric properties and tissue density in head models for personalized radio-frequency dosimetry
E. A. Rashed, Y. Diao, A. Hirata Physics in Medicine and Biology (2020) DOI: 10.1088/1361-6560/ab7308 Keywords: Electromagnetic exposure, radio frequency, human safety, deep learning, SAR Preprint: https://arxiv.org/abs/1911.01220 Software: available from here |
Deep learning-based development of personalized human head model with non-uniform conductivity for brain stimulation
E. A. Rashed, J. Gomez-Tames, A. Hirata IEEE Transactions on Medical Imaging (2020) DOI: 10.1109/TMI.2020.2969682 Keywords: Precision medicine, electrical conductivity, MRI, deep learning, convolutional neural networks, TMS Preprint: https://arxiv.org/abs/1910.02420 Software: available from here |
Development of accurate human head models for personalized electromagnetic dosimetry using deep learning
E. A. Rashed, J. Gomez-Tames, A. Hirata NeuroImage (2019) DOI: 10.1016/j.neuroimage.2019.116132 Keywords: CNN, deep learning, image segmentation, transcranial magnetic stimulation (TMS) Preprint: https://arxiv.org/abs/2002.09080 Software: available from here |
Brain AI: Deep learning for brain stimulation
E. A. Rashed, T. Sakai, J. Gomez-Tames, A. Hirata IEEE PULSE (2019) DOI: 10.1109/MPULS.2019.2923888 Open access: https://pulse.embs.org/july-2019/brain-ai-deep-learning-for-brain-stimulation/ available with translation in Spanish and Japanese 🏆 Issue cover story |
Electromagnetic Compatibility
Power absorption and temperature rise in deep learning based head models for local radiofrequency exposure
S. Kodera, R. Yoshida, E. A. Rashed, Y. Diao, H. Takizawa, A. Hirata Physics in Medicine and Biology (2025) DOI: 10.1088/1361-6560/adb935 Keywords: Local exposure, deep learning, international guidelines, tissue thermal parameter, power absorption, temperature rise Open access: TBA |
Effect of the conductivity variations on computed electric field induced in learning-based models
Y. Diao, E. A. Rashed, L. Giaccone, I. Laakso, C. Li, R. Scorretti, A. Hirata IEEE Access (2024) DOI: 10.1109/ACCESS.2024.3514710 Keywords: Low frequency, electromagnetic safety, human protection, standardization, intercomparison study. Open access: https://ieeexplore.ieee.org/document/10788714 |
Sensitivity of electrocardiogram on electrode-pair locations for wearable devices: Computational analysis of amplitude and waveform distortion
K. Sanjo, K. Hebiguchi, C. Tang, E. A. Rashed, S. Kodera, H. Togo, A. Hirata Biosensors (2024) DOI: 10.3390/bios14030153 Keywords: ECG, Numerical human model, scalar-potential finite-difference method, wearable device Open access: https://www.mdpi.com/2079-6374/14/3/153 |
Inter-comparison of the averaged induced electric field in learning-based human head models exposed to low-frequency magnetic fields
Y. Diao, E. A. Rashed, L. Giaccone, I. Laakso, C. Li, R. Scorretti, Y. Sekiba, K. Yamazaki, A. Hirata IEEE Access (2023) DOI: 10.1109/ACCESS.2023.3268133 Keywords: Low frequency, electromagnetic safety, human protection, standardization Open access: https://ieeexplore.ieee.org/document/10103878 |
Induced electric field in learning-based head models with smooth conductivity for exposure to uniform low-frequency magnetic fields
Y. Diao, E. A. Rashed, A. Hirata IEEE Transactions on Electromagnetic Compatibility (2022) DOI: 10.1109/TEMC.2022.3212860 Keywords: Electromagnetic exposure, electromagnetic safety, deep learning, low frequency, medical images, standardization PDF: download |
Measurement and image-based estimation of dielectric properties of biological tissues --past, present, and future--
K. Sasaki, E. Porter, E. A. Rashed, L. Farrugia, G. Schmid Physics in Medicine and Biology (2022) DOI: 10.1088/1361-6560/ac7b64 Keywords: Dielectric properties, biological tissues, dielectric measurement, human body modeling, electromagnetic safety, malignant tissue, electrical properties tomography Open access: https://iopscience.iop.org/article/10.1088/1361-6560/ac7b64 |
Assessment of human exposure to electromagnetic fields: review and future directions
A. Hirata, Y. Diao, T. Onishi, K. Sasaki, S. Ahn, D. Colombi, V. De Santis, I. Laakso, L. Giaccone, W. Joseph, E. A. Rashed, W. Kainz, J. Chen IEEE Transactions on Electromagnetic Compatibility (2021) DOI: 10.1109/TEMC.2021.3109249 Keywords: Compliance assessment, computational methods, electromagnetic safety, human body modeling, medical safety PDF: download |
Evaluation of SAR and temprature rise in human hand due to contact current from 100 kHz to 100 MHz
T. Murakawa, Y. Diao, E. A. Rashed, S. Kodera, Y. Tanaka, Y. Kamimura, S. Kitamura, S. Uehara, Y. Otaka, A. Hirata IEEE Access (2020) DOI: 10.1109/ACCESS.2020.3035815 Keywords: biological effects of radiation, electrical safety, standardization, electromagnetic compatibility Open access: https://ieeexplore.ieee.org/document/9247983 |
Assessment of absorbed power density and temperature rise for nonplanar body model under electromagnetic exposure above 6 GHz
Y. Diao, E. A. Rashed, A. Hirata Physics in Medicine and Biology (2020) DOI: 10.1088/1361-6560/abbdb7 Keywords: numerical dosimetry, FDTD, conformal thermal model, stair-casing error Preprint: https://arxiv.org/abs/2007.02604 |
Large-scale analysis of the head proximity effects on antenna performance using machine learning based models
Y. Diao, E. A. Rashed, A. Hirata IEEE Access (2020) DOI: 10.1109/ACCESS.2020.3017773 Keywords: Radiation performance, Machine learning, FDTD, EM exposure Open access: https://ieeexplore.ieee.org/document/9171235 |
Effect of skin-to-skin contact on stimulation threshold and dosimetry
E. A. Rashed, Y. Diao, S. Tanaka, T. Sakai, J. Gomez-Tames, A. Hirata IEEE Transactions on Electromagnetic Compatibility (2020) DOI: 10.1109/TEMC.2020.2985404 Keywords: Skin-to-skin contact, kinematic modeling, magnetic stimulation, human exposure Preprint: https://arxiv.org/abs/2002.06497 |
Spatial averaging schemes of in situ electric field for low-frequency magnetic field exposure
Y. Diao, J. Gomez-Tames, E. A. Rashed, R. Kavet, A. Hirata IEEE Access (2019) DOI: 10.1109/ACCESS.2019.2960394 Keywords: Human safety, dosimetry, standardization, low frequency, spatial averaging Open access: https://ieeexplore.ieee.org/document/8936363 |
Human head skin thickness modeling for electromagnetic dosimetry
E. A. Rashed, J. Gomez-Tames, A. Hirata IEEE Access (2019) DOI: 10.1109/ACCESS.2019.2904743 Keywords: Skin modeling, TMS, Radiation safety, Human exposure Open access: https://ieeexplore.ieee.org/document/8667003 |
Environmental data analysis
Social implementation and intervention with estimated morbidity of heat-related illnesses from weather data: A case study from Nagoya City, Japan
T. Nishimura, E. A. Rashed, S. Kodera, H. Shirakami, R. Kawaguchi, K. Watanabe, M. Nemoto, A. Hirata Sustainable Cities and Society (2021) DOI: 10.1016/j.scs.2021.103203 Keywords: Heat wave, heat-related illness, ambulance dispatches, Computational modeling, weather data, Long Short-Term Memory (LSTM) Full access: https://authors.elsevier.com/c/1dVg67sfVZ2dKJ (up to 20 Sept. 2021) PDF: download |
Model-based approach for analyzing prevalence of nuclear cataracts in elderly residents
S. Kodera, A. Hirata, F. Miura, E. A. Rashed, N. Hatsusaka, N. Yamamoto, E. Kubo, H. Sasaki Computers in Biology and Medicine (2020) DOI: 10.1016/j.compbiomed.2020.104009 Keywords: Bioheat modeling, FDTD computation, heat accumulation, thermoregulation, lens temperature, nuclear cataract, wet-bulb globe temperature Preprint: https://arxiv.org/abs/2009.08005 |
Estimation of heat-related morbidity from weather data: a computational study in three prefectures of Japan over 2013-2018
S. Kodera, T. Nishimura, E. A. Rashed, K. Hasegawa, I. Takeuchi, R. Egawa, A. Hirata Environment International (2019) DOI: 10.1016/j.envint.2019.104907 Open access: https://authors.elsevier.com/sd/article/S0160412019308360 PDF: download |
Image/single processing
A novel CNN pooling layer for breast cancer segmentation and classification from thermograms
E. A. Mohamed, T. Gaber, O. Karam, E. A. Rashed Plos One (2022) DOI: 10.1371/journal.pone.0276523 Keywords: Breast cancer, segmentation; deep learning; CNN, pooling layer, thermography, U-Net Open access: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276523 |
Deep learning model for fully automated breast cancer detection system from thermograms
E. A. Mohamed, E. A. Rashed, T. Gaber, O. Karam Plos One (2022) DOI: 10.1371/journal.pone.0262349 Keywords: Breast cancer, segmentation, deep learning, CNN, thermography, U-Net Open access: https://journals.plos.org/plosone/article/metrics?id=10.1371/journal.pone.0262349 |
ECG localization method based on volume conductor model and Kalman filtering
Y. Nakano, E. A. Rashed, T. Nakane, I. Laakso, A. Hirata Sensors (2021) DOI: 10.3390/s21134275 Keywords: Electrocardiography, cardiac source localization, finite difference methods, inverse problems Open access: https://www.mdpi.com/1424-8220/21/13/4275 |
Double-Sided Sliding-Paraboloid (DSSP): A new tool for preprocessing GPR data
M. Rashed and E. A. Rashed Computers & Geosciences (2017) DOI: 10.1016/j.cageo.2017.02.005 Keywords: Rolling ball algorithm, ground penetrating radar, background noise Open access: https://academic.oup.com/jge/article/12/6/897/5110778 |
GPR background removal using directional total variation minimisation approach
E. A. Rashed Journal of Geophysics and Engineering (2015) DOI: 10.1088/1742-2132/12/6/897 Keywords: Ground penetrating radar, clutter, image denoise, total variation filtering PDF: download |
Multiresolution mammogram analysis in multilevel decomposition
E. A. Rashed, I. A. Ismail, S. I. Zaki, Pattern Recognition Letters (2007) DOI: 10.1016/j.patrec.2006.07.010 Keywords: Digital mammograms, discrete wavelets transform, features extraction, breast cancer diagnosis PDF: download |
Tomographic imaging
Sparsity-based method for ring artifact elimination in computed tomography
M. Selim, E. A. Rashed, M. A. Atiea, H. Kudo PLOS One (2022) DOI: 10.1371/journal.pone.0268410 Keywords: Computed tomography, ring artifacts, iterative image reconstruction, compressed sensing Open access: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268410 |
Probabilistic atlas prior for CT image reconstruction
E. A. Rashed, H. Kudo Computer Methods and Programs in Biomedicine (2016) DOI: 10.1016/j.cmpb.2016.02.017 Keywords: Computed tomography, statistical image reconstruction, probabilistic atlas, Laplacian mixture model PDF: download |
Sparsity-constrained three-dimensional image reconstruction for C-arm angiography
E. A. Rashed, M. al-Shatouri, H. Kudo Computers in Biology and Medicine (2015) DOI: 10.1016/j.compbiomed.2015.04.014 Keywords: Image reconstruction, computed tomography, C-arm angiography, Sparsity, ADMM PDF: download |
Image reconstruction for sparse-view CT and interior CT - introduction to compressed sensing and differentiated backprojection
H. Kudo, T. Suzuki, E. A. Rashed Quantitative Imaging in Medicine and Surgery (2013) DOI: 10.3978/j.issn.2223-4292.2013.06.01 Keywords: Computed tomography, image reconstruction, image processing, compressed sensing, differentiated backprojection Open access: https://qims.amegroups.com/article/view/2233 🏆 Paper figure is selected as journal volume cover |
Towards high-resolution synchrotron radiation imaging with statistical iterative reconstruction
E. A. Rashed, H. Kudo Journal of Synchrotron Radiation (2013) DOI: 10.1107/S0909049512041301 Keywords: Synchrotron radiation, micro-computed tomography, local tomography, statistical iterative reconstruction; high resolution PDF: download |
Statistical image reconstruction from limited projection data with intensity priors
E. A. Rashed, H. Kudo Physics in Medicine and Biology (2012) DOI: 10.1088/0031-9155/57/7/2039 Keywords: Image reconstruction, computed tomography, limited projection data, intensity priors Download: https://tsukuba.repo.nii.ac.jp/?action=repository_action_common_download&item_id=28159&item_no=1&attribute_id=17&file_no=1 |
Data analysis
Revolutionising healthcare with artificial intelligence: a bibliometric analysis of 40 years of progress in health systems
W. Hussain, M. Mabrok, H. Gao, F. Rabhi, E. A. Rashed Digital Health (2024) DOI: 10.1177/20552076241258757 Keywords: Machine learning, Artificial Intelligence in health, Health prediction, Medical Systems, Bibliometric, Citation Analysis, Web of Science, AI in health |
BinHOA: Efficient Binary Horse Herd optimization method for feature selection: methods and analysis
D. A. Elmanakhly, M. Saleh, E. A. Rashed, M. Abdel-basset IEEE Access (2022) DOI: 10.1109/ACCESS.2022.3156593 Keywords: Horse herd optimization, horse herd optimization algorithm, feature selection, metaheuristics, machine learning, Levy flight, classification |
An improved equilibrium optimizer algorithm for features selection: methods and analysis
D. A. Elmanakhly, M. Saleh, E. A. Rashed IEEE Access (2021) DOI: 10.1109/ACCESS.2021.3108097 Keywords: Machine learning, optimization methods, wrapping, data analysis |
Comprehensive data analysis for development of custom qRT-PCR miRNA assay for glioblastoma: a prevalidation study
E. A. Toraih, H. Y. Abdallah, E. A. Rashed, A. El-Wazir, M. A. Tantawy, M. S. Fawzy Epigenomics (2019) DOI: 10.2217/epi-2018-0134 Keywords: Arab, bioinformatics analysis, biomarkers, diagnosis, glioblastoma, miRNAs, prognosis, qRT-PCR Download: pdf |